Supplementary website for

So you think you can PLS-DA?
Ruiz-Perez, Guan, Madhivanan, Mathee, Narasimhan


 

 

 

http://biorg.cs.fiu.edu/images/photos/dani2.jpg

Image result for haibin guan fiu

https://stempel.fiu.edu/wp-content/uploads/sites/75/2017/11/Purnima_Madhivanan.jpg

https://users.cs.fiu.edu/~giri/photos/me.jpg

 

Daniel Ruiz-Perez

Bioinformatics Research Group (BioRG)

School of Computing and Information Sciences

Florida International University

Miami, Florida

 

Haibin Guan

Bioinformatics Research Group (BioRG)

School of Computing and Information Sciences

Florida International University

Miami, Florida

 

Purnima Madhivanan

Department of Epidemiology

School of Public Health

Florida International University

Miami, Florida

 

Kalai Mathee

Herbert Wertheim College of Medicine

Florida International University

Miami, Florida

 

Giri Narasimhan

Bioinformatics Research Group (BioRG)

School of Computing and Information Sciences

Florida International University

Miami, Florida

 

 

This website contains all the figures from the main paper and the supplementary figures. The caption of every figure provides with a link that allows them to be rotated and interacted with in a 3D fashion.

 

Performance for the linearly separable points model

 

SignalAndNoiseVaryingSamplesnSignal10nRep100.PNG

SignalAndNoisenSamples200nRep100.PNG

SignalAndNoiseCosinenSamples200nRep100.PNG

Figure 3. Performance for linearly separable points model, varying samples and noise (VIEW 3D MODEL).

Figure S1. Performance for linearly separable points model, varying signal and noise (VIEW 3D MODEL).

Figure S2. Performance for linearly separable points model with the cosine model, varying signal and noise (VIEW 3D MODEL).

 

Performance for the interval model

 

 

 

 

Signal constrained

Noise constrained

p=3

interval/IntervalDataLimitsAlsoLeft3IntervalsnSamples100nRep200.PNG

interval/IntervalDataLimitsAlsoLeft3IntervalsINVERTEDnSamples100nRep200.PNG

a) 3 Intervals constraining signal (VIEW 3D MODEL).

b) 3 Intervals constraining noise (VIEW 3D MODEL).

p=5

interval/IntervalDataLimitsAlsoLeft5IntervalsnSamples100nRep200.PNG

interval/IntervalDataLimitsAlsoLeft5IntervalsINVERTEDnSamples100nRep200.PNG

c) 5 Intervals constraining signal (VIEW 3D MODEL)

d) 5 Intervals constraining noise (VIEW 3D MODEL).

p=10

interval/IntervalDataLimitsAlsoLeft10IntervalsnSamples100nRep200.PNG

interval/IntervalDataLimitsAlsoLeft10IntervalsINVERTEDnSamples100nRep200.PNG

e) 10 Intervals constraining signal (VIEW 3D MODEL).

f) 10 Intervals constraining noise (VIEW 3D MODEL).

 

Figure S3. Table of configurations for the interval model

 

 

Performance for the cluster model

 

ClusterSamplesSeparationnSignal10nNoise200nRep100.PNG

Figure 4. Performance for the cluster model, High number of samples (VIEW 3D MODEL).

 

Classification cross validation accuracy for the different models


 

 

SignalAndNoiseCVPerformancenSignal10nRepetitions100Croped.PNG

ClusterCVPerformancenSignal10nRepetitions10Croped.PNG

a) Accuracy for the linearly separable points model (VIEW 3D MODEL).

 

b) Accuracy for the Cluster model (VIEW 3D MODEL).

 

IntervalData5IntervalsCVPerformanceDirectRep100.PNG

IntervalData5IntervalsCVPerformanceInvertednRep100.PNG

c) Accuracy for the Interval model constraining signal (VIEW MODEL).

 

d) Accuracy for the Interval model constraining noise (VIEW MODEL).

 

Figure S4. Experiments as a classifier

 

EXPERIMENTS ADDING ICA, RLDA AND SPCA

 

 

Figure S5. Performance for linearly separable points model, varying signal and noise (VIEW 3D MODEL).

Figure S6. Performance for linearly separable points model, varying samples and noise (VIEW 3D MODEL).

 

 

Figure 5. Performance signal constrained interval with p=3 (VIEW 3D MODEL).

Figure S7. Performance noise constrained interval with p=3 (VIEW 3D MODEL).

 

Figure S8. Performance for the cluster model, High number of samples (VIEW 3D MODEL).