Predicting Regulatory Elements in *P. falciparum*

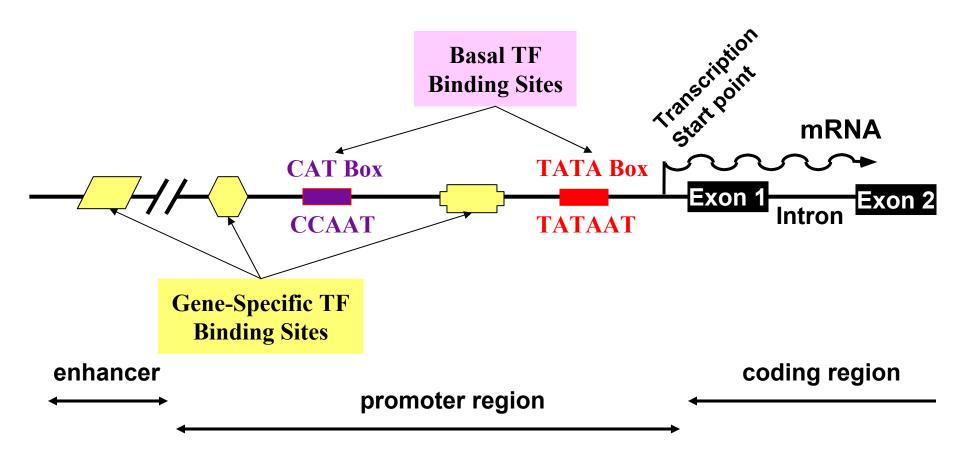
Chengyong Yang

Erliang Zeng Giri Narasimhan

BioInformatics Research Group (BioRG)
School of Computer Science
Florida International University, Miami, FL.

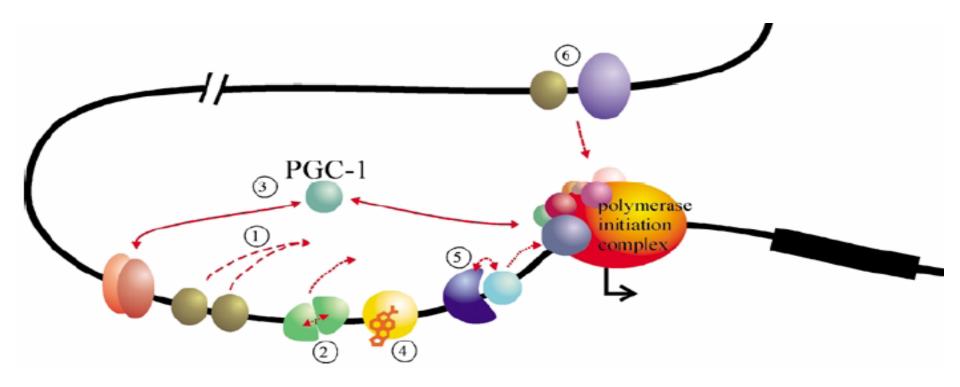
Kalai Mathee

Department of Biological Sciences
Florida International University, Miami, FL.



Outline

- Biology of Transcription Regulation
- Mining Regulatory Elements (or Transcription Factor Binding Motifs or TFBMs)
- Experimental Results
- Conclusion
- Future Work



Transcription Regulation

Transcription Regulation

[Goffart et al. Exp. Physiology (2003)]

Outline

- Biology of Transcription Regulation
- Mining Regulatory Elements (or Transcription Factor Binding Motifs or TFBMs)
- Experimental Results
- PlasmoTFBM database & Web Query Interface
- Conclusion
- Future Work

Transcription Factor Binding Motifs (TFBM)

- Why look for TFBMs?
 - Which TFs regulate a specific gene?
 - Which genes are co-regulated by same TF?
 - Understand strength of gene expression.
 - Understand gene regulatory pathways.

How to Find TF Binding Motifs?

Direct Experimental Assays

Need to know the TFs.

- Electrophoretic mobility shift assay
- Nuclease protection assay

Need to know the TFBMs

Computational Methods

- Search for known motifs
- Predict sites based on pattern discovery in upstream sequences

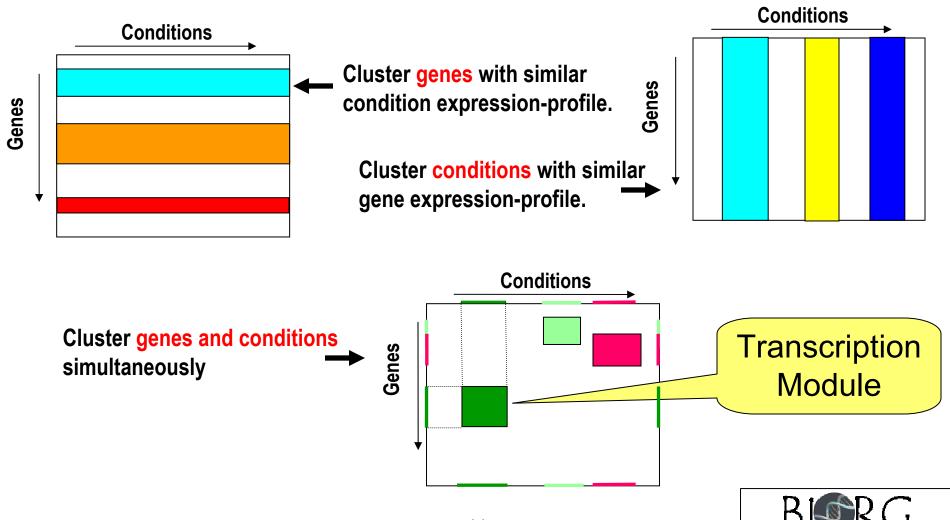
Only need to know the upstream sequences

CAMDA Data Set

- Microarray data from DeRisi lab
- 46 data sets for a 48 hour time period for *P. falciparum* during the intraerythrocytic development life cycle.
- During the 48 hour period, P. falciparum goes through 4 stages:
 - Ring (1-15 hpi)
 - Trophozoite (16-28 hpi)
 - Schizont (29-42 hpi)
 - Merozoite (43-48 hpi)

Broad Questions Raised

- Are there transcriptional events that distinguish the 4 stages of the organism?
- Are there functional similarities in the genes that share motifs?


AlignACE

[Roth et al. Nature Biotechnology (1998)]

- Uses Gibbs Sampling to find good alignments of upstream sequences.
- Maximizes relative entropy to find significant motifs.
- Significant motifs: must over-represent in the input set and must have small probability of occurring by chance.

Clustering of Samples or/and Genes

Transcription Module

Transcription Module: a set of genes G and a set of conditions C such that the genes in G are coregulated under conditions C.

[Ihmel et al. Nature Genetics (2002)]

Iterative Signature Algorithm (ISA)

- Defines the score of a set of genes and conditions.
- Iteratively refines the set of genes and conditions until a "stable" transcription module is obtained.

[Ihmel et al. Bioinformatics (2004)]

Predicting TFBMs: Method I

Strength of TFBMs

- TFs bind to DNA in sequence-specific manner.
- If the motif is "strong", then the binding is strong and the regulation is strong.
- Correlation between gene expression and the strength of its upstream TFBMs.
- MotifRegressor [Conlon et al., PNAS 2003] exploits this correlation.

Motif Regressor

[Conlon et al., PNAS, 2003]

- 1. Rank all genes by expression and obtain upstream sequences of highly ranked genes.
- 2. Use MDscan to find motifs from most induced and most repressed genes.
- 3. Score each upstream sequence for matches to each MDscan reported motif.
- 4. Perform linear regression between motif matching score and gene expression and identify significant motifs.

46 separate runs of MotifRegressor resulted in 637 significant motifs.

PlasmoTFBM Database

- All results were put into a searchable MySQL database containing:
 - Modules
 - Motifs
 - Gene Annotation information
 - Gene Expression data
 - Upstream sequence data
 - Miscellaneous data

Outline

- Biology of Transcription Regulation
- Mining Regulatory Elements (or Transcription Factor Binding Motifs or TFBMs)
- Experimental Results
- Conclusion
- Future Work

Results

- A. Validation of known motifs
 - 1. G-Box motif
 - 2. var gene family
- B. Motif clusters & motif-stage correlations
- C. All Motifs in single gene of interest
- D. Gene Family Analysis (SERA genes)

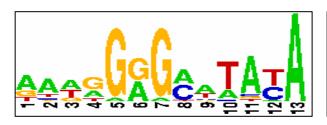
A: G-Box Motifs

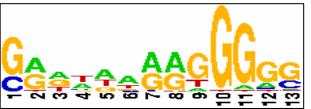
- P. falciparum genome is AT-rich (15% GC)
- G-box: a unique regulatory element
- Identified in upstreams of heat shock proteins (hsp).

Published Motif

[Militello et al., MBP, 2004]

(A/G)NGGGG(C/A)




A: G-Box Motifs

(A/G)NGGGG(C/A)

[Militello et al., MBP, 2004]

G-Box from PlasmoTFBM

TG-box

A: var Gene Family

[Voss et al., Mol Microbiol, 2003]

- 50 diverse var genes
- Coding for variants of *P. falciparum* erythrocyte membrane protein 1 (PfEMP1)
- Ability to switch the expression of PfEMP1
- Allows the parasite to escape specific immune responses

A: Significant Motifs in var Genes

[Voss et al., Mol Microbiol, 2003]

SPE2

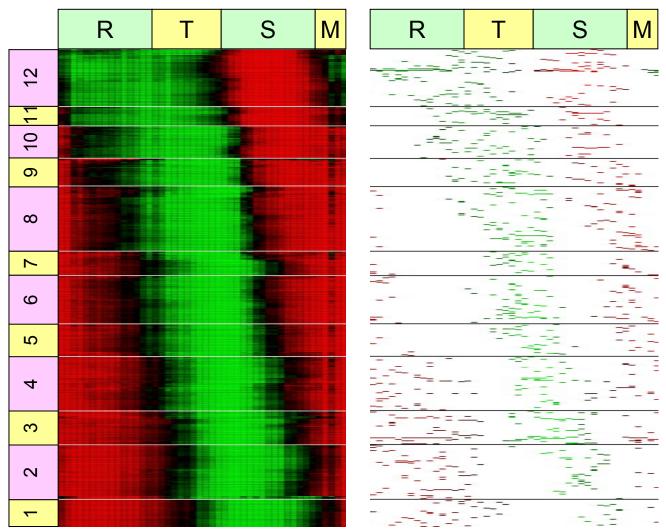
TGTGCATAGTG

Repressed 38 hpi

PF08_010 PFL0935c PF10_040 PFB0010w PFI1830c PFA0765c

CPE

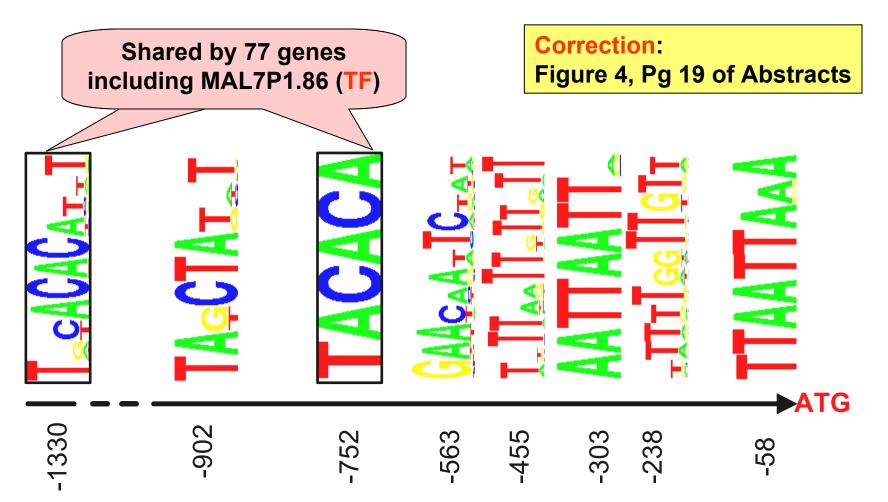
ATGTTGTACAT


Induced 11 hpi

PFL0935c PF14_048 PFB0010w PF08_0103 PFI1830c PF10_0406 PFL1955w PFA0765c PFD0615c

B: Motif Clusters

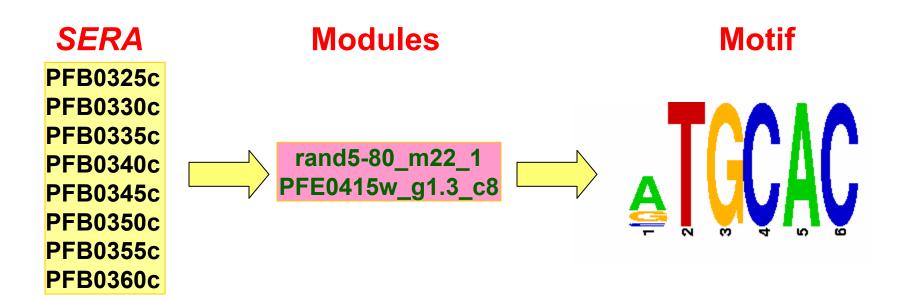
[Genesis, http://genome.tugraz.at/Software]


C: *EBA140*

[Thompson et al., Mol Microbiol, 2001]

- EBA140 is implicated in merozoite invasion on erythrocytes
- Putative vaccine target
- Share sequence homology and structural features with EBA175

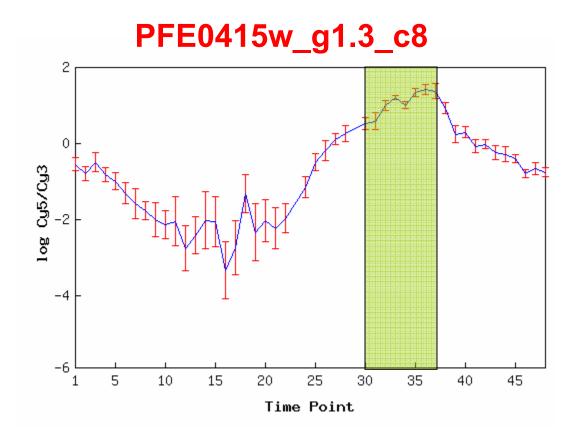
C: Motifs Found in EBA140



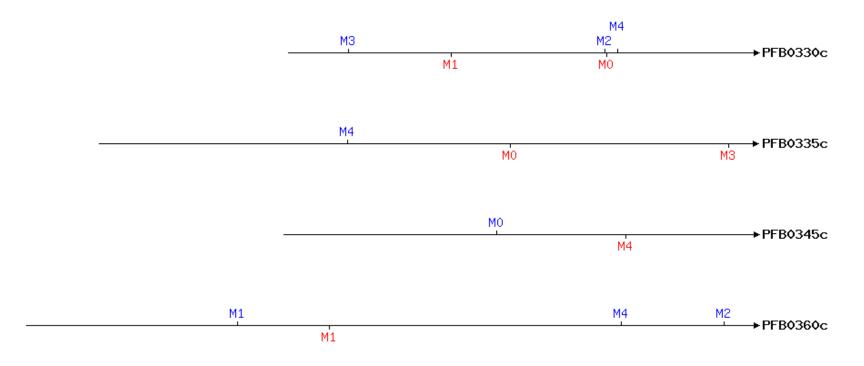
D: SERA Gene Family

[Miller et al., JBC, 2002]

- Serine repeat antigen (SERA)
- Adjacent, co-regulated genes from Chr 2
- Highly expressed in late blood cycle
- Target of protective immune response
- Possesses a protease function domain
- Serves both as a vaccine and a drug target to control P. falciparum


D: Motif Discovered in SERA

http://biorg.cs.fiu.edu/TFBM/tfbm.php



D: Module Average Expression Profile

D: SERA TFBMs Visualization

MO M1 M2 M3 M4
TACAC AATTAG GTGTA GACAA ATGCAC

Conclusions

- PlasmoTFBM: first comprehensive database of P. falciparum TFBMs
- Validated many known P. falciparum motifs
- Discovered new interesting motifs
- Web query interface built for biologists

Acknowledgements

- BioRG members (Tao Li, Gaolin Zheng, Tom Milledge)
- Prof. Shirley Liu, Harvard (MotifRegressor)
- Haifeng Wang, Jing Zhai & Wei Shi

http://biorg.cs.fiu.edu/CAMDA2004 http://biorg.cs.fiu.edu/TFBM/tfbm.php

